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Motivation

[Dolgopolov 2012]

Vega Landers 
June 11 & 15, 1985

Over 30 years since any sensor 

has entered Venus atmosphere
• Venera 4 through 14, 1967-82

• Pioneer Multiprobe, 1978

• Vega Landers 1985

Science impact: the last 30 years 

of sensor development has yet to 

be used on sampled Venusian gas!
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Small Probes

But flybys & orbiters 

plentiful since 1985
• Galileo 1990

• Magellan 1990 (orbit)

• Cassini-Huygens 1998 & 1999

• Messenger 2006 & 2007

• Venus express 2006 (orbit)

• Ikaros 2010

• Akatsuki 2015 (orbit)

Idea: Add a small probe

to a larger mission

• Low mass (ideally)

• Low cost (ideally)

Question: How “small” is small? 
Can we beat a 61kg sphere?

Pioneer Large Probe
78cm sphere, 193kg (1978)

Pioneer Small Probe
47cm sphere, 61kg (1978)

No parachute

[Bienstock 2004]

+ bonus 33kg landed
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Study Goals and Method

Functional Requirements

• Reach surface before heat death (750°K temperature, 90 atm of pressure)

• Bring payload, which competes with thermal & pressure systems for mass

Methodology: 

(1) Develop simple model of Venus atmosphere descent

(2) Perform parametric study on probe mass

(3) Correlate pressure & thermal system mass to probe mass

(4) Find the minimum mass cutoff for a given payload

Goal: Find minimum mass probe that can 

descend entire Venus atmosphere
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Entry completed, heat shield has already ejected

Deploy a Smooth Spherical Probe

• No Parachute

• 65km altitude

• 200m/s velocity

• 30° angle below horizon

• 30°C internal temperature

Assumptions
• Thermal capacity: Heat Sink Only at FOS 1.3, 

assumes negligible capacity from pressure vessel, 

structure, & insulation

• Internal Heating: 50 watts from payload

• Insulation Leakage: 50% effectiveness

• Pressure vessel: buckling Roark’s formula, FOS 1.3

• Atmospheric data: VIRA model, Schofield et. al. 1985

• Heat convection: from Achenbach 1978

• Drag coefficients: from Bailey 1972

Descent Model

Pressure Vessel

(Titanium 6Al-V4)

Payload

Phase-change Heat Sink

(Melting LiNO3-3H2O)

Insulation

(ZIRCAL-18)

Prior Study: Lorenz 1997

• No Pressure Vessel

• Payload gains +100°C
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Example Probe Descent

• 500mm diameter sphere

• 0.8 bulk density*

• 52kg total mass

~50% payload mass fraction

Reaches surface in 20 minutes, impacts at 24 m/s

• 17kg pressure vessel (5mm thick)

• 5.5kg of insulation (30mm thick)

• 4.5kg of phase-change heat sink

*bulk density normalized to water (1000kg/m3): includes pressure vessel, insulation, payload, and heat sink
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Lesson #1

Reynolds number stays roughly 

constant (Re ≈ 107)

• Means constant drag coefficient

(Cd ≈ 0.2 for a sphere)

• Lets allow choosing Cd as a design 

parameter

Strategy A: Fall Fast

• Larger convection
coefficient

• Less time to conduct 
heat from skin

Strategy B: Fall Slow

• Smaller convection
coefficient

• More time to conduct 
heat from skin
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Lesson #2

Conduction is the *dominant* constrictor of heat flow

• Convection is very strong (high velocity & Nu ≈ 104)

• Skin temperature quickly reaches atmosphere temperature

• But melted only 76% of available 4.5kg of Lithium salt

750°K ≈ Tatm

Rconvection

Tvessel Tsink ≈ 300°KTskin

Rvessel Rinsulation
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Lesson #3

Thermal design has an optimum

• Time-to-impact is only important input

• Instantaneous velocity does not matter

Optimal
Thickness
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Parameter Sweep

*VISAGE (proposed mission) 

and Lorenz data from expected

performance

Assumes streamlining 

adds negligible mass
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Trajectory Correlations

Impact velocity and time correlate with Ballistic number B

Note: Data for VISAGE*, VEGA, PION-L, & PION-S probes assumes separated flow (Cd=1.2), and 

impact time measured from parachute cut at 45-55km, or 50km if no parachute
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Mass Fractions of Subsystems

• Thermal system: dependent on both ballistic number and drag coefficient

• Pressure vessel: dependent only on bulk density
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Example Probes (at ρpayload = 0.7kg/m3)

A: Spherical 500mm Diameter

• Total: 52kg mass, 0.8 bulk density

• Payload: 25kg mass (47%), 0.7 density

• Trajectory: 22min descent, 19m/s impact

B: Streamlined 400mm Diameter

• Total: 27kg mass, 0.8 bulk density

• Payload: 13kg mass (48%), 0.7 density

• Trajectory: 12min descent, 34m/s impact

C: Streamlined 250mm Diameter

• Total: 5.7kg mass, 0.7 bulk density

• Payload: 1.4kg mass (24%), 0.7 density

• Trajectory: 17min descent, 25m/s impact

Cutoff around 2kg, as thermal & pressure 

systems take all the mass

Small probes (5-10kg range) with 

30°C payload can plausibly survive 

Venus atmosphere
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Conclusions

Aerodynamics: Streamlining is highly enabling

• Mitigates conduction timeline

• Negligibly increases convection

• Tradeoff shorter measure time  (~15 minutes) 

for a colder payload 

Thermal: Tradeoff between insulation and sink mass

• Optimums exists for both minimum mass and volume

• Analytic solution for optimum point

Small probes are plausible

• Range 5-10kg have payload fractions above 20%

• Pressure vessel takes ~20% to 40% of mass (denser is better)

• Thermal system takes ~10% to 40% of mass (denser & streamlined is better)

[in-prep] Izraelevitz, J.S. & Hall, J. Minimum-Mass Limits for Streamlined Venus 

Atmospheric Probes. AIAA Journal of Spacecraft and Rockets, 2018

Optimal
Thickness
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Backup Slides
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ODE solver (Runga-Kutta), combined with known correlations for spheres

Computation Method

z - altitude

v - velocity

Q - heat energy sunk
T, ρ, μ - atmosphere properties

Re - Reynolds number

Ma - Mach number 

Cd - drag coefficient

Nu - Nusselt number

D - drag force

h - convection coefficient

a - acceleration

q - heat flow rate
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Example Probes

Probe 
Number

Diameter 
(m)

Bulk 
Density
(vs water)

Drag
Coefficient

Mass 
(kg)

Ballistic 
number
(kg/m^2)

Impact
Velocity 
(m/s)

Impact 
Time from 
50km
(s)

Payload 
Mass 
(kg)

Payload
Mass 
Fraction

Payload
Bulk 
Density
(vs water)

1 0.5 0.8 0.2 52.35988 1333.333 19.11983 22.24201 24.67644 0.471285 0.679686

2 0.4 0.8 0.05 26.80826 4266.667 34.2394 12.29557 12.95176 0.483126 0.665883

3 0.25 0.7 0.05 5.726862 2333.333 25.28088 16.75017 1.400331 0.24452 0.643993


